Solution to 1996 Problem 50


The definition of the invariant interval is
\begin{align*}\left( \Delta s \right)^2 = \left(\Delta x \right)^2 + \left(\Delta y \right)^2 + \left(\Delta z \right)^2 - c^...
First, we evaluate \left( \Delta s \right)^2 in inertial frame S:
\begin{align*}\left( \Delta s \right)^2 = 9 c^2 \;\mathrm{min}^2\end{align*}
Now, we evaluate \left( \Delta s \right)^2 in inertial frame S':
\begin{align*}\left( \Delta s \right)^2 = 25 c^2 \;\mathrm{min}^2 - c^2 \left(\Delta t \right)^2 \end{align*}
\left( \Delta s \right)^2 must have the same value when evaluated in the two inertial frames, therefore
\begin{align*}9 c^2 \;\mathrm{min}^2 = 25 c^2 \;\mathrm{min}^2 - c^2 \left(\Delta t \right)^2  \Rightarrow \Delta t = \boxed{...
Therefore, answer (C) is correct.


return to the 1996 problem list

return to homepage


Please send questions or comments to X@gmail.com where X = physgre.